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Abstract. We consider the action of the modular group0(2) on the set of positive rational
fractions. From this, we derive a model for a classification of fractional (as well as integer) Hall
states which can be visualized on two ‘visibility’ diagrams, the first one being associated with
even denominator fractions whereas the second one is linked to odd denominator fractions. We
use this model to predict, among some interesting physical quantities, the relative ratios of the
width of the different transversal resistivity plateaus. A numerical simulation of the tranversal
resistivity plot based on this last prediction fits well with the present experimental data.

1. Introduction

Since the discovery of the two-dimensional quantized Hall conductivity by [1] for the integer
plateaus and by [2] for the fractional ones, the quantum Hall effect has been an intensive
field of theoretical and experimental investigations.

The pioneering theoretical contributions [3a–c] relating the basic features of the
hierarchy of the Hall plateaus with the properties of a two-dimensional incompressible
fluid with fractional charges collective excitations [3a] have triggered further works dealing
with condensed matter theory [4], quantum field theory¶ and mathematical physics [5].
It appears now that the two-dimensional electron system in the quantum Hall regime is
associated with a complicated phase diagram with a lot of possible transitions between the
various phases, whose better understanding deserves further experimental and theoretical
studies.

As far as the theoretical viewpoint is concerned, two important elements underlying
numerous works can be singled out: (i) the flux attachment transformation relating quantum
Hall states [6] for which the Chern–Simons theory is a suitable field theory framework; (ii)
the hierarchical structure of the set of Hall states [7]+ where particle-hole symmetry plays
an important role. The combination of the above elements into a Chern–Simons–Landau–
Ginzburg theory has led the authors of [8] to propose a topology of the phase diagram (in

§ Unité de Recherche des universités Paris 11 et Paris 6 associée au CNRS.
‖ Laboratoire associé au CNRS, URA D0063.
¶ We have in mind models related to Chern–Simons theory, Coulomb gas approach and rational conformal field
theories; see [4] and references therein.
+ Given a basis of Laughlin states, one can obtain elements of the set of Hall states through condensation of
quasiparticles of other elements of the set.
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the external magnetic field-disorder plane) together with an attempt to explain the possible
origin of superuniversality ruling the considered transitions.

It appears that (at least some of) the above ideas can be formulated in term of modular
transformations, that is, discrete symmetry transformations acting on some parameter space
of the quantum Hall system and pertaining to the modular group or one of its subgroups.
Modular transformations in the framework of quantum Hall effect have been considered
from different viewpoints [9].

Recently [10], two of us constructed a classification of the quantum Hall states based
on arithmetical properties of the group0(2) of modular transformations acting on the three
cusps{i∞}, {0} and{1} of its fundamental domain in the Poincaré half plane. The proposed
classification reproduces and refines the Jain hierarchical one [11]. In particular, it has
obtained families of quantum Hall fluid states (plus the insulator state), each family being
generated from a metallic state labelled by an even denominator fractionλ = (2s + 1)/2r .

The purpose of this paper is to extract more algebraic properties linked with this
classification, then to translate them into a graphical representation, called the visibility
diagram [12] which generates Farey sequences [13] together with an associated diagram
called the dual diagram. From this analysis, we predict a global organization of the various
Hall conductivity states stemming from the action of0(2) as well as some important
quantitative features of the Hall fractional conductivity plateaus such as the relative ratios
of their width (at least for a not too strong applied magnetic field). Furthermore, we obtain
from a numerical construction a transverse resistivity plot which fits very well with the
experimental data.

The paper is organized as follows. In section 2 we present useful material underlying our
classification of the quantum Hall states. In section 3, we introduce the visibility diagram
together with its associated dual diagram in connection with the quantum Hall effect. The
corresponding physical information encoded in these diagrams is discussed in section 4
where we also confront a numerical simulation of the resistivity plot stemming from our
construction to the experimental data. Finally, we summarize our results and conclude in
section 5.

2. The group Γ(2) and the quantum Hall states

In this section, we summarize the essential tools that will be needed in the sequel as well
as some of the main results of the previous work [10] to which we refer for more details.

Let P be the upper complex plane andz be a complex coordinate onP (Imz >
0). We recall that the inhomogeneous modular group0(1) (=PSL(2, Z)) is the set of
transformationsG acting onP and defined by:

G(z) = az + b
cz + d a, b, c, d ∈ Z ad − bc = 1 (unimodularity condition).

(2.1)

The modular group0(1) has two generators given by:

T (z) = z + 1 S(z) = −1

z
. (2.2)

The group0(2) that will be the building block of the following construction is a subgroup
of 0(1). 0(2) is known in mathematical literature as the principal congruence unimodular
group at level 2. It is the set of transformationsG acting onP defined by

equation (2.1) a andd odd b andc even. (2.3)
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0(2) is a free group generated by

T 2(z) = z + 2 6(z) = ST −2S(z) = z

2z + 1
. (2.4)

For more mathematical properties of0(2), see, for example [14]. Here, we notice that
0(2) is a common subgroup of two other subgroups of0(1) which have already been
considered from different viewpoints in connection with the quantum Hall effect. The first
one,0S(2), is generated byT 2 and S and is the natural symmetry group of the Landau
problem on the torus; it appears in the construction of the many-body Landau states on
the torus [16] in terms of the Coulomb gas vertex operators [16]. The second subgroup of
0(1), 0T (2), which contains0(2), is related to the similarity transformations used by Jain
in his hierarchical model [11]. Recall that0T (2) is generated byT and6.

TransformationsG ∈ 0(2) can be written as

G(z) = (2s + 1)z + 2n

2rz + (2k + 1)
(2.5)

wherek, n, r, s ∈ Z satisfy the unimodularity condition

(2s + 1)(2k + 1)− 4rn = 1. (2.6)

Now, identify any fractionz = p/q with a filling factor and select a given Hall metallic
state labelled byλ = (2s+1)

2r with r > 0, s > 0. As shown in [10], there is a family of
transformationsGλ

n,k ∈ 0(2) (with n andk still satisfying (2.6)) which sendsz = i∞ onto
λ. Then, from the imagesGλ

n,k(0) andGλ
n,k(1) of 0 and 1 by the transformationsGλ

n,k,
one obtains a (Jain-like) hierarchy of Hall states surrounding the metallic stateλ on the
resistivity plots.

For example, the double Jain familyJ i1/2 of states surrounding the metallic stateλ = 1
2

J+1/2 = 1
3,

2
5,

3
7 . . . N/(2N + 1) (2.7a)

J−1/2 = 2
3,

3
5,

4
7 . . . N/(2N − 1) (2.7b)

can be easily recovered in our scheme from the imagesG
1/2
n,k (0) andG1/2

n,k (1) with respectively
n > 0 for (2.7a) and n < 0 for (2.7b). Notice that the construction separates the even
numerator Hall fractions from the odd numerator one so that it may be possible to take
into account a possible particle-hole symmetry within the present scheme. Other families
surrounding any metallic state (fraction with even denominator) can be constructed in the
same way so that all the experimentally observed Hall states can be taken into account in
the present construction. This will be discussed further in section 4.

In the next section, we will be concerned with a diagrammatic description of the
classification of the quantum Hall states which permits one to visualize the global
organization of the various Hall conductivity states stemming from the action of0(2).
To reach this goal, we first introduce a convenient parametrization of the transformations
Gλ
n,k. Indeed, it can easily be verified that theGλ

n,k ’s, for fixed λ = (2s + 1)/2r, can be
recast into the form

Gλ
m(z) =

(2s + 1)z + 2m(2s + 1)+ 2b

2rz + 2m(2r)+ 2d + 1
(2.8)

wherem is any integer andb andd are also arbitrary integers satisfying the unimodularity
condition

(2s + 1)(2d + 1)− 4rb = 1. (2.9)
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For a givenλ, fixing b, d and varyingm from −∞ to∞, a complete hierarchy of states is
recovered as before [10] fromGλ

m(0) andGλ
m(1). Furthermore, one has

lim
m→±∞G

λ
m(z) = λ (2.10)

which reflects the fact that the sequence of Hall fluid fractions converges to the fractionλ

labelling a given metallic state which defines that sequence. This point has to be compared
with the general topology of the recently proposed phase diagrams for the quantum Hall
effect where, roughly, each metallic state (even denominator state) appears to be surrounded
by a definite family of Hall liquid states (odd denominator states). We will discuss this point
in section 4.

From the above parametrization (2.8), we now construct a shift operatorAλ ∈ 0(2)
corresponding to each metallic stateλ, which acts on the fluid states (and possibly on the
insulator stateν = 0). We define this shift operatorAλ (which depends only onλ) as the
following operator product

Aλ = Gλ
m+1 ◦ (Gλ

m)
−1 (2.11)

whose action is given by

Aλ(z) = (1− 2(2r)(2s + 1))z + 2(2s + 1)2

−2(2r)2z + 1+ 2(2s + 1)2r
. (2.12)

The action ofAλ to a given rational fractionp/q equal toGλ
m(0) or Gλ

m(1) gives another
rational fraction equal respectively toGλ

m+1(0) or Gλ
m+1(1), so thatAλ acts as a shift

operator, raising the numberm by one unit. The inverse operator(Aλ)−1 performs the
corresponding lowering inm.

The operatorsAλ satisfy the following relations

Aλ(z) = z ⇐⇒ z = λ (2.13)

Tr[Aλ] = 2 (2.14)

det[Aλ] = 1 (2.15)

where [Aλ] denotes the two-by-two matrix corresponding to the modular transformation
Aλ. Equations (2.14) and (2.15) are just a mere consequence of the definition of the group
0(2). Notice that (2.14) reflects the parabolic nature of the transformationsAλ which
means thatAλ may have no more than two fixed points (which must be necessarily real
[14]). Therefore, equation (2.13) means that the metallic stateλ = (2s + 1)/2r is actually
the unique fixed point for the shift operatorAλ. This last property may be extended to the
case wherer = 0, which corresponds to the point at infinity on the real axis.

3. Visibility diagram and dual diagram

We are now in position to introduce a diagrammatic description that we find particularly
useful and predictive for the classification of the quantum Hall states. This diagrammatic
tool, which permits one to obtain quantitative results on the different quantum Hall states
is called the ‘visibility diagram’ and has already been used in other areas of physics [12].
We will also introduce another diagram, hereafter called the dual diagram, which will allow
us to extract in a straightforward way some of the information encoded in the visibility
diagram.
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3.1. The visibility diagram

This diagram is a simple pictorial device for the construction of Farey sequences [13] of
rational numbers, each one being associated to a given vertex of a two-dimensional square
lattice.

3
4
5
6
7
8
9

2
1

10

16

11
12
13
14
15

17
18
19

1 2 3 4 50 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2120 22 23 24

p

q

Figure 1. Visibility diagram. Full dots correspond to odd denominator fractions whereas open
dots indicate even denominator fractions.

Let us consider the two-dimensional square lattice depicted in figure 1 where the vertices
are indexed by a couple of positive or null relatively prime integers(q, p). Since the action
of 0(2) preserves the even or odd nature ofq and since a special role is played by the
even denominator fractions in the sequel, we find it convenient to use different symbols
(see figure 1) to separate the vertices belonging to a row withq even from those belonging
to a q odd row. Therefore, the visibility diagram is made of the vertices of couples(q, p)

of positive integers which are not hidden by any other vertex for an observer located at the
origin (0, 0). Notice that the origin is not considered as a visible point.

It is known in arithmetics that all the Farey-ordered sequencesFn, (n = 1, 2, . . .) of
rational fractionsp/q with p positive and 06 q 6 n are in one-to-one correspondence
with the visible vertices(q, p),0 6 q 6 n. Strictly speaking, for any Farey sequence
Fn, p and q are required to satisfyp 6 n and q 6= 0; here, since we are considering
applying the above machinery to the fractional quantum Hall effect, we relax the above
requirement somehow, thus allowing fractions withp > n (and formally the ‘infinite
fraction’∞ ≡ 1/0 ⇐⇒ (0, 1)).

Corresponding to this identification, the group0(2) acts on the vertices of the visibility
diagram in a rather simple way: it is actually represented by the linear action of two-by-
two matrices on the two components(q, p) of the vertices, a property we will use in the
following.

Now, it is easy to draw on the visibility diagram each family of vertices corresponding
to the previously introduced fractionsGλ

m(0) andGλ
m(1).

Let us describe in detail what kind of picture we obtain (see figure 2). First, for a given
λ = (2s + 1)/2, r = 1, the quantum Hall rational numbersGλ

m(0) andGλ
m(1), wherem

is any integer, are all located on each parallel side of distinct unbounded bevelled left-end
side stripes. The two sides of each stripe start from the vertices(1, s) and (1, s + 1) and
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Figure 2. Even denominator stripes structure.

their slope is equal toλ = (2s + 1)/2, as it can be easily seen by using for instance (2.8)
and (2.9) from which one obtains after some algebra the equations defining the two parallel
sides of the stripes. They are given in the(q, p) plane byP = ( 2s+1

2 )Q ∓ 1
2 where the

minus (resp. plus) sign refers to the side starting from the vertex(1, s) (resp. (1, s + 1)).
This agrees with the generation mechanism we gave previously for each Jain-type family
[10]; recall that, as far as the action of0(2) is concerned, the couple of cusps({s}, {s+1})
may be substituted into the equivalent couple({0}, {1}). The metallic stateλ itself is shown
to be surrounded on the visibility diagram by the family of fluid states (and eventually by
the insulator wheneverλ = 1

2) it generates. We will call such families(λ = (2s+1)/2) the
principal stripes (r = 1).

Glued on each side of any principal stripe there is an infinite number of other secondary,
tertiary. . . stripes (r = 2, 3 . . .). They are all similar in shape to a principal one: two
infinite parallel sides, a bevelled left-end side and each one labelled by a metallic state
λ = (2s + 1)/2r. The statesGλ

m(0) andGλ
m(1), with m being any integer, are all located on

the parallel sides of the stripeλ in such a way that each metallic state finds itself isolated
from the other metallic states by the members of its family on a stripe of slopeλ. Starting
from the secondary stripes (r = 2), it is possible to construct families of tertiary stripes,
quartenary stripes etc, families of stripes of any order. The equations defining the two
sides of a stripe of orderr are easily derived from (2.8) and (2.9). They are given in
the (q, p) plane byP = ( 2s+1

2r )Q ∓ 1
2r . A pecularity appears in the diagram concerning

the Hall insulator state(ν = 0). Its vertex representation is(1, 0); clearly it pertains to a
given family λ, only for λ = 1/2r(r > 1). This last property could have some importance
for a possible direct phase transition between that state and another state. The reader has
certainly noticed that the quadrantp > 0, q > 0 is not completely covered by stripes, a
(half) stripe-shaped region is left uncovered, it is defined byp > 0, 0 6 q 6 1. We shall
also come back to this last pecularity.

On any fraction of any given stripeλ acts as the step operatorAλ or its inverse in such
a way that the metallic stateλ = (2s + 1)/2r located at the lattice vertex(2r, 2s + 1) is a
fixed point forAλ. The fluid states (and eventually the insulator state) on the edge of the
corresponding stripe are all transformed among themselves under that action, any of them
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Figure 3. Odd denominator stripes structure.

is in fact the image of aGλ
m(0) or aGλ

m(1) under some power ofAλ and its inverse. In fact,
all the information encoded in this diagram can be thoroughly reproduced by using theAλ’s
and (Aλ)−1’s. This can be rephased by saying that theAλ’s are the algebraic counterpart
of the graphical representation of the (tree-like) structures formed by the Hall states on the
above diagram.

3.2. The dual diagram

Observe that the previous structure on the visibility diagram is a mere consequence of a well
known theorem in arithmetics which states that, for any given two relatively prime positive
integersp andq, there exist two other (necessarily relatively prime) positive integersa and
b satisfyingpb − qa = 1 or pb − qa = −1. Using this theorem, it is now easy to realize
that the set of(a, b) pairs stemming from these latter equations, for fixed(p, q) andq even,
are all located on the two sides of the stripe labelled byλ = p

q
depicted in figure 2.

But one could instead considerq odd so that another structure can be obtained in the
visibility diagram where now stripes labelled byλ = p

q
with q odd can be defined as shown

in figure 3. We will call this resulting structure the dual diagram. Indeed, it can easily
be seen that any stripe in figure 2 corresponds to a given direction on the dual diagram
(depicted by dotted lines in figure 3), and conversely. This diagram will prove to be useful
at evaluating the relative ratios of the width of the Hall plateaus.

4. Physical discussion

We are now in position to extract some physical information from the two diagrams that
have been defined. We first identify any fractionp/q with the filling factor ν (what we
implicitly assumed in the previous sections). This picture suggests that the0(2) symmetry
transformations act on some parameter space describing the quantum Hall system. Recall
that the metallic (resp. liquid) states are labelled by fractions with an even (resp. odd)
denominator.

First, keeping in mind the above identification, it is obvious that our construction treats
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integer and fractional states on an equal footing. Now, consider the structure given in
figure 2. One observes that each principal stripe bears a self-similar branched structure
built from that stripe and all its descendants. Notice that the resulting global organization
of the states in the stripes agrees quite well with the experimentally observed one. We point
out that our construction predicts the existence of an infinite number of families with a self-
similar (tree-like) structure. As far as the present experimental situation is concerned, (see
[17]), the Jain familyλ = 1

2 corresponding in figure 2 to the stripe with the largest width,
has the most numerous well established observed states (Nobs ≈ 13). The other observed
families labelled respectively byλ = 3

2,
1
4,

3
4,

5
2,

5
4 and corresponding respectively to stripes

of decreasing width are associated to a decreasing number of observed states (respectively
Nobs ≈ 7, 6, 5, 4). Roughly speaking, this suggests that the width of a stripe may be related
to the (experimental) difficulty to observe the associated states. Notice that the insulator
stateν = 0 (= 0/1 in our picture) does not label any stripe on any of both diagrams.

Now consider the action of the two generators of0(2) given in (2.4) on the visibility
diagram. T 2 can be interpreted as a Landau shift operator and6 corresponds to a flux
attachment operator. On the visibility diagram, the action ofT 2 on a vertex(q, p) gives
rise to a vertical shift(q, p)→ (q, p + 2q) whereas the action of6 on (q, p) produces a
horizontal shift(q, p)→ (q + 2p, p). Since flux attachment can be obtained by magnetic
field variation, a variation of the magnetic field is associated on the visibility diagram with
a corresponding horizontal shift. Observe now that the stripes of the dual diagram are
labelled by fractions with odd denominators, each of which correspond to a plateau in the
Hall conductivity. Bringing this all together, this suggests identifying (up to an overall
dimensionful factor) the ‘horizontal’ width of any stripe of the dual diagram, defined by
the intercept of any horizontal line, with that stripe with the width of the corresponding
plateau. Notice that both integer and fractional plateaus are involved in this picture as
already mentioned at the beginning of this section.

It is a straightforward computation to show that the ‘horizontal’ width of any stripe
labelled byλ = p/q is equal to 2/p. Then, the above identification leads to a prediction
of all the ratios of the widths of the Hall plateaus given by

γ (ν1 = p1/q1)

γ (ν2 = p2/q2)
= p2

p1
(4.1)

whereγ (ν) denotes the width of the plateau labelled byν and can be expressed as

γ (ν = p/q) = 2

p
γ0 (4.2)

where the overall parameterγ0 has the dimension of a magnetic field. At this point, one
important remark is in order. It is well known that the width of the plateaus decreases
when the temperature increases so that for sufficiently high temperatures the classical
behaviour for the Hall resistivity is recovered. Therefore, if the above identification is
correct, equation (4.1) should be valid only at zero temperature.

Nevertheless, one might already expect to obtain a reasonably good agreement with the
present (non-zero temperature) experimental data. In order to check this, we have confronted
prediction (4.1) with an experimental resistivity plot [18]. To do this, we have to fix two
parameters. The first one is the width of agiven transverse resistivity plateau which will
determine the value ofγ0. In the present numerical analysis, we choose to fit this value
with the ν = 3

2 experimental plateau. The second parameter is the position of the centre of
this chosenplateau on the ‘to be determined’ resistivity plot. We assume that this plateau
is centred around its corresponding filling factor valueν = 3

2. These two requirements will
determine completely all the widths and positions on the other plateaus. The numerical result
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Figure 4. Numerical determination of the transverse resistivity plot. The horizontal (resp.
vertical) axis corresponds to filling factorν (resp. tranverse resistivity in unith/e2).

is shown in figure 4 and exhibits a good agreement with the corresponding experimental
plot (figure 5).

Figure 5. Our resistivity plot simulation (heavy curve) compared with the classical
measurements of [17] (light curves).

5. Conclusion

In this paper we have exploited some arithmetic properties linked with the classification of
the quantum Hall states stemming from the action of0(2). These properties can be well
synthetized in a graphical representation based on a visibility diagram, in which the resulting
global organization of all the quantum Hall states is found to form (tree-like) self-similar
structures. In particular, this structure is in complete agreement with the (experimental)
hierarchy of observed states.

Furthermore, we used some of the arithmetic properties rooted in this construction
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together with a physical interpretation of the two generators of0(2) to conjecture the (zero
temperature) ratios of the widths of the Hall plateaus. Moreover, this suggests in particular
that the zero temperature values of these ratios are universal. We tried to confront the
predictions obtained from this conjecture to the present (non-zero temperature) experimental
data by constructing numerically the corresponding resistivity plot. This latter is in good
agreement with some experimental resistivity plot (see figure 5).

As has already been mentioned in this paper, the0(2) transformations could be
understood as an infinite set of discrete transformations acting on some parameter space
of the quantum Hall system. Therefore, it should be interesting to use this0(2) symmetry
to construct a model for the quantum Hall effect, for instance in the spirit of [8] and
first of [9]. On the other hand, it should also be interesting to incorporate the0(2)
symmetry into a renormalization group framework to study the possible relations it induces
among the fixed points that might provide some new insight into the possible origin of the
superuniversality property shared by the observed transitions between Hall states. These
questions are presently being studied.
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